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ABSTRACT. The generalized (Glen) flow relation for ice, involving the second invariants of the stress
deviator and strain-rate tensors, is only expected to hold for isotropic polycrystalline ice. Previous
single-stress experiments have shown that for the steady-state flow, which develops at large strains, the
tertiary strain rate is greater than the minimum (secondary creep) value by an enhancement factor
which is larger for shear than compression. Previous experiments combining shear with compression
normal to the shear plane have shown that enhancement of the tertiary octahedral strain rate increases
monotonically from compression alone to shear alone. Additional experiments and analyses presented
here were conducted to further investigate how the separate tertiary shear and compression strain-rate
components are related in combined stress situations. It is found that tertiary compression rates are
more strongly influenced by the addition of shear than is given by a Glen-type flow relation, whereas
shear is less influenced by additional compression. A scalar function formulation of the flow relation is
proposed, which fits the tertiary creep data well and is readily adapted to a generalized form that can be
extended to other stress configurations and applied in ice mass modelling.

1. BACKGROUND
In natural ice masses the most important and common state
of deformation is arguably a combination of approximately
bed-parallel shear and vertical compression. For deforma-
tional flow with a stationary boundary, a region of simple
shear is associated in an essential way with bulk transport of
ice in glaciers, ice sheets and ice shelves, and this is
generally accompanied by normal deformations associated
with increasing velocities along the flow and divergence or
convergence transverse to the flow.

For a coordinate system with x and y horizontal and z
vertical, and corresponding component velocities (u, v, w),
simple shear deformation in the x direction can be
characterized by du/dz= c where we note that the horizontal
planes on which the forces generating shear deformation act
do not rotate, while compression normal to these planes is
described by dw/dz= k, where c/2 and k are the respective
shear and vertical compressive strain rates. The compressive
flow may be confined or unconfined, and quite generally the
accompanying horizontal normal strain rates are
du
dx ¼ ð� � 1Þk and dv

dy ¼ ��k where the factors involving �

indicate the proportions of the deformations in the horizontal
directions, relative to the rate of vertical compression. Note
that � =1/2 corresponds to uniaxial compression in the z
direction, while � =1 corresponds to longitudinally confined
compression in the experiments reported here (Fig. 1).

The generalized flow relation for ice involving the second
invariants of the stress deviator and strain-rate tensors (Nye,
1953; Glen, 1958) provides a useful formulation for the
interactions between the individual stress and strain-rate
components for isotropic ice. This relation is not expected to
apply for anisotropic ice, as indicated by Nye (1953) and

Glen (1958). Furthermore, it is found that under deform-
ation, isotropic polycrystalline ice exists only transitorily, up
to and through a brief period of secondary creep which lasts
for only a few per cent strain around the minimum strain rate
(Budd and Jacka, 1989). With continued deformation, strong
anisotropic crystal orientation fabric patterns develop. These
appear to be uniquely determined by the deformation,
recrystallization and rotation, while their development is
accompanied by an increase in creep rate for both shear and
compression. Ultimately these processes of deformation,
recrystallization and rotation reach a dynamic equilibrium,
resulting in a steady state of tertiary creep and a statistically
stable fabric pattern and crystal size distribution (Budd and
Jacka, 1989). Previous analyses of combined compression
and shear tests showed that the minimum creep rates for
isotropic ice are well described by Glen’s relation between
the second invariants (Li and Jacka, 1996; Li and others,
1996). Separate compression and shear experiments have
shown that the steady-state tertiary flow rates that develop at
large strains (once the anisotropic crystal structure is well
developed) are higher than the transient minima displayed
by the initially isotropic ice, with different amounts of
enhancement. A robust relation exists between the second
invariants of the stress and strain-rate tensors, which can be
described by an enhancement factor for the octahedral (root
mean square of the principal tensor deviators) shear strain
rate (relative to the minimum strain rate). For a fixed value of
the octahedral stress, Li and others (1996) showed that this
enhancement factor increased smoothly from compression
alone to shear alone, with the increasing fraction of shear
relative to compression.

This paper presents and analyses in detail the shear
and compression component ice flow relations, utilizing
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laboratory experiments covering the secondary (minimum
isotropic) and extending to steady-state tertiary creep flow
under combined shear and compression loads. The motiva-
tion for this series of experiments was to study those flow
properties of anisotropic polycrystalline ice relevant to
describing the flow in natural ice masses.

A variety of models for ice deformation have been
proposed to describe the influence of anisotropy, as
discussed in reviews by Marshall (2005) and Gagliardini
and others (2009). The treatments can be divided into two
classes. The majority of models (e.g. Lile, 1978; Azuma and
Goto-Azuma, 1996; Svendsen and Hutter, 1996; Gagliardini
and Meyssonnier, 2000; Thorsteinsson, 2001; Gödert, 2003;
Morland and Staroszczyk, 2003; Gillet-Chaulet and others,
2005; Placidi and Hutter 2006; Placidi and others, 2010)
take the instantaneous state of crystal orientations as an
independent ingredient in the rheological model, typically
involving (directly or indirectly) a summation of the response
of individual crystals. For such models, the separate task of
simulating the evolution of crystal orientation fabrics must
also be performed to enable their utilization in ice-sheet
modelling. As recognized by Marshall (2005), an alternative
approach (e.g. Li and others, 1996; Warner and others,
1999; Wang and others, 2002) is to concentrate on the
description of the steady tertiary flow, where the situation is
arguably more straightforward. This is our approach. While
we make some connections with the character of the
anisotropic crystal fabrics that were obtained for the tertiary
flow state, our main emphasis here is on directly linking the
component stresses and strain rates, since the relevant
fabrics in steady-state tertiary flow are not independent of
the flow and the stress regime.

For clarity we provide the following outline of the
presentation. Firstly we review the early attempts to relate
various laboratory and field observations of ice deformation,
leading to the formulation of the Glen–Nye second-invariant
power law flow relation for ice, based on independent
laboratory tests of compression alone and shear alone. Next
we consider the stress configurations for our tests here,
which involve shear combined with normal compression,
and their connection with more common tests involving
compression or shear alone. We then discuss how our tests
correspond to the predominant stress configurations occur-
ring in ice sheets. We only give a brief description of the
apparatus and experimental approach since they have been
presented previously. Since this paper builds on earlier work
we also draw attention to previous analyses of some aspects
of these tests and related experiments. Even though the
crystallography is not the focus of this paper, we show a
representative set of the steady-state tertiary fabrics that
develop from the initially isotropic distribution of c-axes.
Next, the new results for the strain rates for the individual
shear and compression components are discussed, including
the effect of changes in each component stress on the strain
rates of the other component. This leads to a formulation of
the flow relations for the individual components, as well as
for the second invariants or octahedral stress and strain rates
for this configuration. A cautionary note is given on any
inappropriate use of minimum strain rates in combined
stress experiments since the smaller component is usually
still in the primary anelastic stage when the octahedral
minimum occurs. Finally we show that a scalar function
formulation of the flow relation also fits the data well, can be
readily generalized to stress situations beyond the present

tests, and is here proposed for ease of use in numerical
modelling of ice masses in general.

1.1. The historical basis for the flow law of ice
developed from independent compression and shear
tests
The pioneering work of Glen (1952, 1953, 1955, 1958) and
Steinemann (1954) established the power law form of the
flow relation for ice, largely from separate series of tests on
polycrystalline ice with randomly oriented crystals, in either
unconfined compression or simple shear. Although they
recognized that higher tertiary strain rates and anisotropy
developed at high strains, the relations for secondary flow
rates for isotropic ice tended to be used as the standards
against which studies of the flow of natural ice masses
were compared.

That is to say, for an applied unconfined (uniaxial) com-
pressive stress �z and secondary strain rate _"z and for shear
stress �xz and secondary shear strain rate _"xz , the following
independent relations were established from the tests:

_"z ¼ kc�nz ð1Þ

_"xz ¼ ks�nxz ð2Þ
where n, kc and ks are (for a fixed temperature) empirical
constants determined independently from compression and
shear tests respectively. In the convention used here for
stress tensor components, �ij, the first subscript indicates the
direction of the stress component and the second is the
direction of the normal to the plane over which it acts. A
similar convention applies for the strain-rate components _"ij
(Batchelor, 1967). Although Steinemann (1958a,b) also
carried out some combined stress tests, the data obtained
were not adequate to clearly establish the comparative
relations between compression and shear rates for the
same stresses.

Fig. 1. Diagrammatic representation of the ice creep test config-
uration for long rectangular prism ice samples in horizontal shear
combined with vertical compression, confined in the direction of
flow but free to extend in the transverse direction. The solid and
dotted lines in the profile view show the respective initial
and final shapes of the initially rectangular deformation samples.
The dashed lines indicate the initial profile of the ‘back cut’
parallelepiped samples.
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For the application of the laboratory ice flow data to the
analysis of the observed shear rates through the thickness of
a glacier, Nye (1953) proposed that the flow rates of ice in
compression and shear might be related through the use of a
more general relation between the second invariants of the
strain-rate tensor, _"ij and the deviatoric stress tensor, sij. Glen
(1958) provided a theoretical basis for this type of general-
ized flow relation by analysing the necessary constraints and
conditions on flow. He also pointed out a possible general-
ization of Nye’s isotropic flow relations, and indeed
attempted to analyse Steinemann’s combined stress experi-
ments for failures of the isotropic flow law. The data,
however, were inadequate to establish a clear result. In brief,
to examine Glen’s relation for isotropic ice, for a stress
tensor �ij with principal stresses �1, �2, �3 it might be
expected that the mean normal stress,

p ¼ 1
3
�1 þ �2 þ �3ð Þ ð3Þ

(where –p is the hydrostatic pressure) is not important for the
deformation of incompressible materials like ice. The
experimental results of Rigsby (1958) indicated that pro-
vided the temperature conditions are referred to the
pressure-melting point this appears to be the case for ice,
and it will be assumed to apply here.

The deviatoric stress tensor is given by

sij ¼ �ij � p�ij ð4Þ
where �ij is the Kronecker delta (�ij=1 whenever i= j and
�ij=0 whenever i 6¼ j). The relevant second invariants are
represented by

E2 ¼ 1
2
_"ij _"ij and I2 ¼ 1

2
sijsij ð5Þ

where the Einstein summation convention (summation is
taken over repeated subscripts) is implied.

Jaeger (1969) defines a plane whose normal has direction
cosines l ¼ m ¼ n ¼ 1=

ffiffiffi
3

p�� �� relative to the principal axes.
This plane is known as the octahedral plane as eight planes,
all equally inclined to the principal axes and which
combined describe an octahedron, can be defined. By
definition, the normal stress on the octahedral plane is the
mean normal stress and does not contribute to deformation
(Jaeger, 1969). Therefore it is the shear stress acting on the
octahedral plane, referred to as the octahedral shear stress,
�o, that causes deformation, where

�o ¼ 1
3
sijsij

� �1=2

: ð6Þ

Being the root-mean-square (rms) value of the principal
stress deviators, �o is an appropriate scalar measure of a
generalized stress magnitude. In the following we abbreviate
�o to octahedral stress for clarity. Similarly the octahedral
(shear) strain rate, _"o, is given by

_"o ¼ 1
3
_"ij _"ij

� �1=2

: ð7Þ

Note that Nye (1953) used the less physically relevant
‘effective’ shear stress and strain rate (square roots of the
second invariants in Eqn (5) above), which are simply related
to the octahedral values by

�e ¼
ffiffiffi
3
2

r
�o and _"e ¼

ffiffiffi
3
2

r
_"o: ð8Þ

The Nye proposal that the ice flow law depends only on the

second invariant of the stress deviator tensor gives rise to a
relation of the form

_"ij ¼ Bsij ð9Þ
where for constant conditions (e.g. temperature and impurity
content, etc.), B is a function only of the scalars I2 or �o. This
type of generalized relation was then used as a basis to unify
the different types of laboratory tests (e.g. compression and
shear) and to reconcile them with the observed deformation
rates of glaciers.

For a power law form of the flow relation with degree n
the separate relations for unconfined compression only and
shear only, of the form of Eqns (1) and (2), can be considered
as special cases of the more general relation involving the
second invariants given by

_"o ¼ ko�no ð10Þ
where ko is an empirical constant. In this case the function B
is given by

B ¼ ko�n�1o ð11Þ
and Eqns (1) and (2) may be represented, for shear, by

_"xz ¼ ko�n�1o �xz ð12Þ
and, for unconfined compression, by

_"zz ¼ ko�n�1o szz ð13Þ
so that ks and kc in Eqns (1) and (2) can be related to ko,
given the stress situation, through Eqns (6), (7), (9) and (10),
for the special cases of shear alone and uniaxial compres-
sion alone. As already indicated, this simple attempt to
connect the different modes of deformation to a common
octahedral flow parameter (independent of the nature of the
proportions of applied stresses) fails in tertiary flow.

1.2. Stress configurations for combined shear and
compression
As discussed earlier, the predominant flow regime in large
ice masses consists of a shear flow in which the plane of the
shear does not rotate (typically being aligned with the ice
velocity), combined with compression (or extension) nor-
mal to the plane on which the forces generating the simple
shear act. For this stress and rotation situation, there are a
range of possibilities for the remaining two normal
deformations. As examples of the different modes of
deformation under combined shear and compressive
stresses we discuss two cases: uniaxial (or unconfined)
compression, which connects with the earlier simple stress
tests; and longitudinally confined compression, which
applies to the present set of laboratory tests, and (approxi-
mately) to tests on hollow cylinders as described, for
example, by Steinemann (1954).

Great store is often set by expressing ice flow relations in
a manifestly coordinate-invariant form. While the physics of
the situation must be invariant under general coordinate
transformations, much of the present work deals with
anisotropic flow and particular combinations of stresses, so
there is great utility in choosing an appropriate reference
frame. The Cartesian coordinate reference system we use in
describing our experiments has been specifically chosen to
align with the symmetries of the sample shapes and reflects
the orthotropic symmetries implied by the pattern of applied
compressive and shear stresses. As we shall see, it also
corresponds approximately with the reflection symmetries of
the steady-state induced ice crystal orientation fabric
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patterns. However, it should be noted that for polycrystalline
ice deforming under a shear stress, the fabric pattern passes
through non-orthotropic stages during the progression from
an initial isotropic fabric to a tertiary single maximum (e.g.
Kamb, 1972; Duval, 1981), and through stages where the
symmetries of the fabric pattern are not fully aligned with
those of the applied stresses. There are generally no residual
rotational symmetries in our combined shear and long-
itudinally confined compression tests. Clearly, if confronted
with a physically analogous stress configuration in a
differently oriented reference frame (e.g. in a flow-modelling
situation), it would be straightforward to rotate our com-
ponent flow relations into that frame – but it would be
erroneous to simply assume that the component flow
relations presented here necessarily have simple general-
izations to arbitrary arrangements of stresses; that would
constitute simply guessing at the remaining elements of the
viscosity or fluidity tensors.

While laboratory experiments provide control over the
applied stresses, the deviatoric normal stresses must be
inferred. For the present discussion we assume the flow
relations satisfy the following condition: that in a reference
frame aligned with the orthotropic symmetries implied by
the pattern of applied stresses and any concomitant induced
ice crystal fabric patterns, the vanishing of a strain-rate
component indicates the vanishing of the corresponding
deviatoric stress. Some more exotic flow relations do not
necessarily satisfy this condition (e.g. the Reiner–Rivlin form
explored by Glen (1958) and more recently re-examined by
Morland (2007)).

Shear combined with unconfined compression
For the case of simple shear �xz= � on the horizontal x-y
plane, combined with unconfined simple compression
�z= –� in the vertical (z) direction, the stress tensor takes
the form

�ij ¼
0 0 �
0 0 0
� 0 ��

0@ 1A: ð14Þ

For the initially statistically isotropic, randomly oriented
polycrystalline ice of our laboratory samples we assume that
the mean normal stress is

p ¼ � 1
3
�, ð15Þ

so that the deviatoric stress and strain-rate tensors, sij and _"ij
respectively are

sij ¼
�
3 0 �
0 �

3 0
� 0 �2�

3

0@ 1A and _"ij ¼
_"
2 0 _�
0 _"

2 0
_� 0 � _"

0@ 1A ð16Þ

in terms of the shear strain rate ( _"xz ¼ _�) and the vertical
compressive strain rate ( _"z ¼ � _"). The octahedral stress is

�o ¼
ffiffiffi
2
3

r
1
3
�2 þ �2

� �1=2

ð17Þ

and the octahedral strain rate _"o for combined shear and
unconfined compression is given by

_"o ¼
ffiffiffi
2
3

r
3
4
_"2 þ _�2

� �1=2

: ð18Þ

It could be argued that the application of shear changes the
symmetry and that for tertiary flow with anisotropic crystal
orientation fabrics it is inappropriate to assume a priori that

the extensive normal deviatoric stresses and strain rates in
the longitudinal (x) and transverse (y) directions continue to
be equal. For the present work we do not actually consider
combined stress situations with unconfined compression so
that we need not insist on the point here. Rather, these
relations are presented here to connect with the single stress
results mentioned above. For unconfined compression alone
(� =0) or simple shear alone (�=0), the octahedral invariants

(Eqns (17) and (18)) become �o ¼
ffiffi
2

p
3 � and _"o ¼ 1ffiffi

2
p _" for � =0,

and �o ¼
ffiffi
2
3

q
� , and _"o ¼

ffiffi
2
3

q
_� for �=0.

The flow relation, Eqn (10), reverts to the power-law
dependence on the individual stresses of Eqns (1) and (2),
through Eqns (12) and (13) respectively, and allows the
empirical constants ko, ks and kc to be related (Budd and
Jacka 1989) :

kc ¼ 2
nþ1
2

3n

 !
ko, ks ¼ 2

3

� �n�1
2

ko, ks ¼ 1
2 3

nþ1
2

� �
kc: ð19Þ

For n=3 this gives

kc ¼ 4
27

ko, ks ¼ 2
3
ko, ks ¼ 9

2
kc: ð20Þ

Early attempts to confirm these propositions (Glen, 1958;
Steinemann, 1958a) were unsuccessful. The review of Budd
and Jacka (1989, fig. 5) showed a closer agreement between
theoretical and experimentally derived k values, with a
residual factor-of-two discrepancy. The origin of this
disagreement was later identified as an error in the strain-
rate calculations of Gao (1989). These corrected values
were reported by Li and others (2000). Importantly, these
relations can be used to examine whether in addition to a
cubic dependence on stress, the deformation tests for
unconfined compression alone and for shear alone also
conform to the second-invariant postulate of Nye (1953) via
Eqn (10).

To address these two important questions a compilation
of minimum strain rates from independent shear tests and
unconfined compression tests on isotropic laboratory ice at
–28C, including the previous results from Jacka (1987), Gao
(1989; now corrected), Li (1995) and Budd and Jacka
(1989) is shown in Figure 2. These results show the slopes
on log _"o � log �o axes are indicative of n=3 and also,
more convincingly than previous studies, the separations
appropriate for Eqns (20). Both sets of values are also
shown converted to octahedral stress and strain rates, and
illustrate the convergence of the data towards a common
line (with slope n=3) in agreement with the Nye (1953)
second-invariant postulate. These data indicate a value of
ko = 5.5�10–6 s–1MPa–3, at minimum creep for this test
temperature (–28C). The dependence of ko on temperature
has been given in detail by Budd and Jacka (1989), with
Jacka and Li (1994) showing that the implied creep
activation energy also increases by almost an order of
magnitude from temperatures above –108C to the pressure-
melting point.

Shear combined with confined compression
For combined stress tests in the laboratory, some problems
arise regarding the uniformity of stress and strain rate
throughout the ice sample. The sample shapes most suitable
for tests in compression alone differ from those most suitable
for shear alone. For the combined tests a compromise is
needed. A convenient form of combined stress configuration
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is that described by Li and others (1996), using sampleswhich
are long in the shear (x) direction and short in the vertical (z)
and cross (y) directions, as shown in Figure 1. Because of their
shape, under horizontal shear (�xz= � ) and vertical compres-
sion (�z= –�), these samples are observed to be effectively
confined in the x direction and free to flow in the y direction.
The combined stress configuration can then be described
(under similar assumptions to the preceding section) by

�ij ¼
� �

2 0 �

0 0 0

� 0 ��

0B@
1CA,

sij ¼
0 0 �

0 �
2 0

� 0 � �
2

0B@
1CA,

_"ij ¼
0 0 _�

0 _" 0

_� 0 � _"

0B@
1CA

ð21Þ

since

p ¼ �1
2
�, ð22Þ

and

�o ¼
ffiffiffi
2
3

r
1
4
�2 þ �2

� �1=2

, _"o ¼
ffiffiffi
2
3

r
_"2 þ _�2
� 	1=2

: ð23Þ

Accordingly, if, for confined compression alone, the flow
relation is given by a power law similar to Eqn (1) but with a
different constant, kcc, i.e.

_"z ¼ kcc�nz , ð24Þ
then the following relations between the constants for shear,

confined compression and octahedral values apply in place
of Eqns (19) and (20) for the unconfined case:

kcc ¼ 2
3

� �n�1
2 1

2

� �n

ko, ks ¼ 2
3

� �n�1
2

ko, ks ¼ 2nkcc, ð25Þ

which, for n=3, gives

kcc ¼ 1
12

ko, ks ¼ 2
3
ko, ks ¼ 8 kcc: ð26Þ

Thus the strain rate for confined compression is expected to
be reduced relative to unconfined compression (for the same
compressive stress �) by the factor given by

kcc ¼ 3
4

� �nþ1
2

kc ð27Þ

which, for n=3, gives

kcc ¼ 9
16

kc: ð28Þ

The importance of these k values is to illustrate the
considerable difference between strain rates at the same
stress for different stress configurations. The difference
between the strain rates (represented by these flow par-
ameters) for the same stresses in these different stress
configurations provides a further check on the flow law
exponent (n=3) and the second-invariant hypothesis.

2. THE PREDOMINANT STRESS SITUATIONS IN ICE
MASSES
In ice sheets the predominant mode of deformation is an
approximately horizontal shear with strain rate increasing
towards the bed. In accumulation areas that are near to
steady-state mass balance, there is a net divergence of ice
flux, and the horizontal shear is typically accompanied by
vertical compression and horizontal longitudinal or trans-
verse extensive strain rates. The relative magnitude of the
longitudinal ( _"x ) and transverse ( _"y ) extensive or compressive
strain rates depends largely on the divergence or conver-
gence of the flowlines. In the laboratory this range of
possibilities can be studied by examining the special extreme
cases such as unconfined compression (in which _"x ¼ _"y ),
compression confined in the longitudinal direction ( _"x ¼ 0)
and compression confined in the transverse direction
( _"y ¼ 0). Only the first two of these cases are considered in
the laboratory tests presented here, since the capability to
conduct experiments configured in the third case ( _"y ¼ 0) has
only recently been established with our experimental
apparatus and no results are yet available. In these
experiments the laboratory measurements focus on the
combination of an applied shear stress � with an independent
compression � normal to the plane in which the shear load is
applied (Fig. 1).

For field deformation situations with a dominant shear
plane that does not rotate, it may be useful to examine the
strain rates in terms of independent normal and shear
components, which can be related to laboratory studies
involving combined normal and shear stress experiments.
Nevertheless the flow patterns and rotations must also be
taken into account. For example, in unbounded ice shelves,
vertical compression is usually associated with longitudinal
and transverse extensions, while for bounded ice shelves this
vertical compression is typically combined with a transverse
shear strain rate which tends to increase from zero near the

Fig. 2. Minimum strain rates from deformation tests for shear alone
( _�, crosses), and unconfined compression alone ( _", open squares) as
functions of the individual stresses, and the corresponding
octahedral ( _"o versus �o) relation (open circles), confirming a
Glen-type creep power law with exponent n=3. All tests were
performed at –28C. The sloping lines have all been drawn with
n=3, to show more clearly the ratios expected for ks (dotted line),
kc (dashed line) and ko (solid line) in Eqns (20), from the logarithmic
spacings of the parallel lines.
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central flowline to a maximum towards the sides. Even at the
margins of ice streams, the combination of horizontal and
transverse shear should produce a resultant non-rotating
shear plane. In these various field situations, for nonlinear
flow laws, the shear stress and strain rates are dependent on
the compressive stress and strain rates, and vice versa. Also,
in the field situations where large strains prevail, the ice can
be expected to have developed a strongly anisotropic crystal
fabric whose nature depends on the deformation pattern (e.g.
Budd, 1972; Russell-Head and Budd, 1979; Budd and Jacka,
1989; Durand and others, 2007; Gow and Meese, 2007).

Our aim is to examine the relations between the shear
and compression components in combined stress situations.
We start with laboratory-made statistically isotropic poly-
crystalline ice and consider both flow at minimum strain
rate, in which the ice is still isotropic, and tertiary flow in
which strong polycrystalline anisotropies have developed.

The present work shows that confined compression alone
and simple shear alone have different tertiary flow rates for
equal deviatoric stresses (� = �/2), even though the corres-
ponding second and third invariants are also equal.
Accordingly, any proposal to describe the relative com-
ponent flow rates without recourse to other indicators (e.g.
crystal orientation data) must be expected to depend on the
boundary conditions or platen constraints as well as the
stress configuration, and not just on the invariants of
the stress tensor. This corresponds to considering strain rates
and rotation rates, i.e. the ‘movement picture’, involving the
complete velocity field and its spatial derivatives. These
conditions also determine the steady-state crystal orientation
fabrics, which evolve with the developing tertiary flow rates.
It should be noted that the only form of anisotropy of
concern here is that which develops in conjunction with the
tertiary deformation. This may be referred to as the
‘compatible anisotropy’.

The importance of the movement picture, including the
distinction between simple shear and plane pure shear for
the formation of crystal orientation fabric patterns, was
recognized long ago (e.g. Budd, 1972; Kamb, 1972; Duval,
1981). Duval (1981) referred to the plane normal to the
velocity gradient in simple shear situations as the ‘perma-
nent shear plane’, and commented on its connection with
the developing concentrations of crystal orientations. Thus
for the deformation properties of ice in tertiary flow it is
necessary to consider not only the stress and strain-rate
tensors but also the patterns of flow and the rotations
associated with the boundary conditions of ice-sheet flow
or the platen constraints of the apparatus in laboratory
experiments. In this context, the permanent or non-rotating
shear plane is one on which the forces generating a
shear act.

3. EXPERIMENTS AND LABORATORY APPARATUS
The apparatus and laboratory techniques used for these
experiments have been discussed previously in several
papers (e.g. Li and Jacka, 1996, 1998; Li and others, 1996,
2000; Treverrow and others, 2012), but a few important
points regarding the choice of samples for combined shear
and compression tests need to be made here.

The same apparatus can be used for unconfined
compression alone, confined compression alone, simple
shear alone, or either type of vertical compression in
combination with horizontal simple shear. Figure 1 shows

a schematic representation of the applied stresses. For
unconfined vertical compression the most appropriate
sample shape is the vertical axis cylinder, because of the
axial symmetry of the stress and strain-rate fields. Although
some shear tests and combined compression and shear tests
have been carried out with cylindrical samples, the most
appropriate sample shapes for shear alone tests are the long
rectangular prisms with the elongation in the direction of
shear. This type of sample shape is also suitable for confined
compression tests with the confinement in the shear (x)
direction (cf. Fig. 1).

A large number of long-term tests have now been carried
out with these types of samples, reaching tertiary flow rates,
in simple shear alone, confined compression alone and
simple shear combined with confined compression. The
results presented here were accumulated over many years.
Table 1 lists the group of experiments discussed here. These
experiments, originally described in part by Li and others
(1996) and Warner and others (1999), were carried out at
–28C and were continued to steady-state tertiary flow
generally at >20% strain. All tests used the same labora-
tory-made initially randomly oriented polycrystalline ice,
produced using the method of Jacka and Lile (1984). Table 1
contains details from a reanalysis of these experiments and
lists stress, strain and strain-rate data for both the shear
and compression components and the corresponding
octahedral values, as well as details of the stress configura-
tion and applied stresses.

The influence of sample size and crystal size on flow
rates has been examined previously (e.g. Jacka, 1984, 1994;
Jacka and Li, 1994). Separate experiments have been
carried out to examine the effects of sample shape and
distortion on the results (Li and others, 2000). Here a few
points following from that work are noted. When horizontal
shear tests are commenced with a rectangular prism
sample, some vertical contraction results. This has been
reduced by using longer samples and also by starting with a
vertical parallelogram cross-section shape, which then
passes through the rectangular shape before deforming
further towards a parallelogram shape with continuing
shear. This technique, referred to as starting with a ‘back-
cut’ (Fig. 1), starts with slight vertical extensive strain rate
and passes through a zero vertical strain rate before going to
vertical contraction at even larger shear strains. The
magnitude of these vertical strains and strain rates decreases
with relative length of the sample. Only a few ‘back-cut’
samples have been included in the data of Table 1, so in the
analysis of the results the small vertical strain rates in
experiments with very low compression loads need to be
treated with caution, as discussed later.

At the end of each experiment the sample was removed
from the apparatus, and horizontal thin sections cut. These
were mounted on glass slides for grain size and crystallo-
graphic c-axis orientation measurements. Some examples of
c-axis orientation measurements plotted on equal-area
Schmidt diagrams (lower-hemisphere projections) are
discussed below, although the main analysis will be directly
in terms of the combined stresses, rather than the
compatible fabrics.

4. ICE CRYSTAL ORIENTATION FABRICS
In several earlier series of compression and shear tests,
sequences of crystal orientation fabric measurements were
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made to explore the dependence of fabric development on
cumulative strain (Jacka and Maccagnan, 1984; Gao and
others, 1989; Li, 1995). These results show negligible
change from the initial isotropic structure up to about
1–2% strain. From 2% to 10% strain there is relatively rapid
recrystallization giving clear well-established fabric patterns
by 10%. Extending to 20% strain strengthens the fabrics,
which tend to a steady state in orientation and crystal size
with the continuing tertiary flow. These changes have been
well studied in the laboratory to temperatures below –158C.

A representative set of fabrics resulting from different
laboratory tests is shown in Figure 3, with corresponding
data on some statistical characteristics in Table 2. Figure 3
shows the fabrics for: randomly oriented laboratory ice
(Fig. 3a), single-component stress tests (Fig. 3b–d) and the
combined stress tests of Table 1 (Fig. 3e and f). These fabrics
illustrate confined compression alone (Fig. 3b) with two
maxima at co-latitude angles centred on co-latitude �418;
unconfined compression (Fig. 3c) with a small circle girdle
with mean co-latitude angle �368; shear alone (Fig. 3d)
with a single maximum; and two cases of combined shear
and confined compression (Fig. 3e and f) which show
intermediate composite fabrics, higher shear with lower
compressive deviator (Fig. 3e) and deviators of equal
magnitude (Fig. 3f). All these tertiary creep fabrics have
enhanced concentrations towards the vertical compared
with the initial uniform distribution (Fig. 3a). The median
co-latitude angles, �1/2, for these fabrics are given in
Table 2. The representative fabrics in Figure 3 are also in

accord with results from previous laboratory studies of
compression, shear and combined shear and compression.
For example, Kamb (1972) applied torsion to hollow
cylinders to produce shear and combined this with an axial
normal compression (analogous to our shear with long-
itudinally confined compression) to study fabric develop-
ment to large strains. Figure 18 of Kamb (1972) presents a
schematic of the pattern of change in combined stress
situations from compression dominant to shear dominant.
Similar results, and the establishment of a strong single
maximum at large shear strains, have been presented by
Duval (1981), Bouchez and Duval (1982), Budd and Jacka
(1989) and Li and others (2000). Budd (1972) and Budd and
Jacka (1989) also show there is close agreement between
the fabrics determined from laboratory experiments and
those observed in ice from the field under similar deform-
ation conditions. Note that the fabrics for the combined
stress tests tend to have somewhat reduced concentrations
near the vertical compared with those for simple shear
alone, but are more concentrated towards the vertical than
in either of the compression-only samples.

The magnitude of the co-latitude angle, �, is not the most
appropriate indicator of the resistance of a crystal to
horizontal shear. Crystals at a certain (small) angle, say �,
from the vertical in the transverse (z-y) plane are expected to
have less resistance to the shear in the x direction than
crystals with the same co-latitude angle � in the longitudinal
(x-z) plane. Therefore the mean angles from the vertical of
the projections of the c-axis directions in the (x-z) plane,  ,

Table 1. Results of combined shear and compression ice deformation experiments. Sample dimensions: length, L, width, W, height, H, and,
for cylindrical sample, diameter, D. Stresses: compressive stress, �, shear stress, � , octahedral stress, �o. Combined stress shear variable: rs
(Eqn (37)). Minimum strain rates: compressive, _"zz, min , shear, _�xz, min , octahedral, _"o, min ; tertiary strain rates: compressive, _"zz, ter, shear,
_�xz, ter, octahedral, _"o, ter; final octahedral strain, "o, final. Samples were initially isotropic, and temperature for all tests was –28C. The blanks in
the table correspond to the zero-stress components in the compression-alone and shear-alone tests, or indicate where data were not
available

Test L, W, H � � �o r s _"zz;min _�xz;min _"o;min _"zz;ter _�xz;ter _"o;ter "o;final

mm MPa MPa MPa 10–7 s–1 10–7 s–1 10–7 s–1 10–6 s–1 10–6 s–1 10–6 s–1 %

1 60, 15, 32 0.000 0.490 0.400 1.00 5.90 4.80 5.00 4.10 50
2 60, 15, 32 0.160 0.480 0.400 0.89 2.60 1.10 3.80 1.10 3.70 3.20 32
3 60, 15, 32 0.340 0.460 0.400 0.77 2.70 4.10 3.90 1.70 3.40 3.10 41
4 60, 15, 32 0.490 0.420 0.400 0.66 1.60 2.70 3.30 1.50 2.30 2.30 30
5 60, 15, 32 0.730 0.320 0.400 0.46 4.70 0.33 3.90 0.93 0.99 1.10 30
6 60, 15, 32 0.900 0.190 0.400 0.25 3.70 0.62 3.10 0.73 0.49 0.72 23
7 25.4 (D), 40 0.850 0.000 0.400 0.0 3.00 2.10 1.20 0.83 30
8 95, 15, 20 0.000 0.245 0.200 1.00 0.36 0.30 0.46 0.38 72
9 97, 15, 20 0.000 0.245 0.200 1.00 0.35 0.29 0.60 0.49 43
10 100, 15, 20 0.000 0.245 0.200 1.00 0.42 0.34 0.52 0.43 91
11 60, 15, 32 0.000 0.245 0.200 1.00 0.40 0.32 0.63 0.51 53
12 60, 15, 22 0.000 0.490 0.400 1.00 3.30 2.70 4.00 3.30 57
13 60, 15, 32 0.490 0.000 0.200 0.0 0.27 0.22 0.12 0.096 11
14 60, 15, 32 0.490 0.061 0.206 0.16 0.25 0.11 0.23 0.12 0.053 0.11 14
15 60, 15, 32 0.490 0.245 0.283 0.50 0.38 1.40 1.20 0.45 0.49 0.54 28
16 60, 15, 32 1.960 0.490 0.894 0.30 66.0 29.0 59.0 32.0 21.0 31.0 35
17 60, 15, 32 0.980 0.980 0.894 0.70 22.0 48.0 43.0 49.0 210 190 47
18 60, 15, 32 0.980 0.245 0.447 0.30 5.70 0.68 5.30 1.90 1.30 1.90 44
19 60, 15, 32 0.980 0.122 0.412 0.16 11.0 0.47 9.2 1.40 0.51 1.20 31
20 60, 15, 32 0.980 0.367 0.500 0.41 8.10 6.50 8.50 3.30 2.70 3.50 25
21 60, 15, 32 0.392 0.147 0.200 0.41 0.50 0.16 0.45 0.096 0.12 0.12 23
22 60, 15, 32 0.980 0.490 0.566 0.50 11.0 11.0 13.0 6.40 6.70 7.60 43
23 60, 15, 32 0.735 0.490 0.500 0.59 14.0 2.30 13.0 4.20 5.70 5.80 36
24 59, 15, 32 0.490 0.490 0.447 0.70 4.50 2.90 7.40 2.90 4.60 4.40 28
25 60, 15, 32 0.245 0.490 0.412 0.84 1.90 5.50 4.90 1.90 4.70 4.20 23
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and the (y-z) plane, �, are also shown in Table 2. The table
includes (1) the means, �, and (2) the standard deviations,
SD �, for the co-latitude angles, (3) the median co-latitude
angle, �1/2, which encloses half the c-axis directions
measured in a thin section, (4) the differences between the
median angles and 458, i.e. (458 –�1/2), the first quartile of
c-axis angles � nearest the pole, �1/4, (5) the mean modulus
of the (y-z) plane component, �j j, and (6) the mean modulus
of the (x-z) plane component,  j j.

Without integrating the resistance over all the individual
crystals in the sample aggregates in the manner discussed
by Lile (1978, 1984) or Azuma and Goto-Azuma (1996),
these orientation angle statistics provide at least a qualita-
tive indication of the expected relative resistance of these
polycrystalline aggregates to vertical compression and
horizontal shear. For example, the combination of the
difference of the median co-latitude from 458 and the
standard deviation may provide a useful indication of
resistance to vertical compression. Considering the fabrics
presented in Figure 3, the above would indicate, from the
values for (458 –�1/2), that the fabrics resulting from the two
compression-dominated experiments (Fig. 3b and c) should
show the least resistance to compression, followed by the
initial laboratory ice with near random distribution
(Fig. 3a). The three samples that had been subjected to
shear (Fig. 3d–f) might be expected to be more resistive to
compression in direct relation to the shear fraction (Eqn
(29) below), but in combined stress tests we find that this is
not necessarily the case. In fact the compressive strain rate
in these combined stress configurations is shown to
increase through to tertiary creep as the strong central
fabric (Fig. 3e) develops.

Conversely the resistance to shear in the x direction might
be assessed from the angles �1/4 and  j j. These suggest the
least shear resistance would occur for the shear-only
sample (Fig. 3d), followed by the other sheared samples

incorporating some compression, then the compression-
alone samples and finally the initial laboratory ice. Note that
the compressed ice confined in the direction of shear
(Fig. 3b) develops a fabric with a small value of  j j (158), and
should offer less resistance to shear. Note also that, for the
samples from the combined stress experiments, the fabrics
change from nearly isotropic (e.g. Fig. 3a) at minimum strain
rate, to fabrics apparently more resistive to compression in
tertiary flow (e.g. Fig. 3e), even though at the same time the
compressive component strain rate is increasing, as shown
in Figures 4, 5 and 6b. Explaining this situation in tertiary
flow might prove a challenge to models of ice flow that are
solely driven by considerations of crystal orientation fabrics
(e.g. Azuma and Goto-Azuma, 1996; Thorsteinsson, 2001),
but it is naturally accommodated by the flow relations
presented later in this paper.

Here we are examining the direct relationship between
stresses and strain rates for a particular set of experimental
stress configurations. In steady-state tertiary creep, the
compatible crystal orientation fabric is uniquely determined
by the deformation so that fabric can be regarded as an
indicator of the flow. A detailed examination of the micro-
mechanical processes associated with development of
fabrics during deformation is beyond the scope of this work.
We also note here that the steady-state tertiary fabrics that
develop are independent of the initial fabrics of the ice,
which are always overwritten by recrystallization, primarily
between 2% and 10% strain. Accordingly, for tertiary flow
we would only need to consider the steady-state compatible
fabrics as described here. In a similar fashion we need not
discuss crystal size here since it is not an independent

Fig. 3. Crystal orientation fabrics for horizontal (x-y) sections, with x
in the shear direction as shown in Figure 1. The units of the applied
compression, �, and shear, � , are MPa. The total accumulated
octahedral strain, "o, is given below for each sample. (a) Randomly
oriented laboratory-made ice ("o = 0%). (b) Two-maximum fabric
generated by confined compression alone ("o = 15%). (c) Girdle
fabric generated by unconfined compression alone ("o = 22%). (d)
Single-maximum fabric generated by shear alone ("o = 101%). (e)
Fabric generated by large shear and smaller confined compression
deviator (test 24, "o = 28%). (f) Fabric generated by comparable
shear and confined compression deviator (test 22, "o = 43%). All
experiments were conducted at –28C. All crystal orientation fabric
diagrams are lower-hemisphere Schmidt equal-area plots, with
(a–d) from previously published tests.

Table 2. Statistics of ice crystal orientation fabrics (angles in
degrees) for fabrics a–f shown in Figure 3. The c-axis angles are
measured relative to the x, y, z, axes with z vertical, x along
the shear direction and y transverse, as shown in Figure 1. � is
the angle between the c-axis and the vertical (co-latitude). � is the
angle between the vertical and the projection of the c-axis in
the (y, z) plane.  is the angle between the vertical and the
projection of the c-axis in the (x, z) plane. �= tan–1(tan� sin 	);
 = tan–1(tan� cos 	), where 	 is the angle between the projection
of the c-axis in the (x, y) plane and the x-axis (i.e. the c-axis
longitude, measured from the shear direction). � is the mean co-
latitude and SD� its standard deviation, �1=2 is the median angle
from the vertical (enclosing 50% of the total number of c-axes)
and �1=4 is the first quartile angle from the vertical (enclosing 25%
of the total axes)

Fabric label (Fig. 3)

a b c d e f

� 54 41 36 20 24 23
SD� 22 13 14 10 10 9
�1=2 57 43 34 19 24 23
45� �1=2 –12 2 11 26 21 22
�1=4 38 33 27 12 17 18
�j j 42 38 26 14 17 16
 j j 42 15 25 12 13 15
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influence on tertiary flow for clean ice. Rather, steady-state
crystal size is determined by stress, as shown previously by
Jacka and Li (1994).

5. RESULTS FROM PREVIOUS COMBINED SHEAR
AND COMPRESSION TESTS
A shorter series of combined shear and compression tests
(included in the data presented here) was used by Li and
others (1996) to examine how well the flow relation based
on the second invariants held for both minimum (isotropic

ice) flow rates and tertiary (anisotropic) flow rates. Those
tests were carried out at a constant octahedral stress
(�o = 0.4MPa), with different relative amounts of shear and
compression for different tests, ranging from confined
compression alone to shear alone.

The results for minimum strain rate showed that a
common octahedral strain rate occurred (allowing for scatter)
for all combinations of shear and compression at that
common octahedral stress, supporting the Glen flow law
for isotropic ice in terms of the octahedral values through
Eqns (10) and (23). That work was extended by Li and Jacka
(1996), to show that the flow law for octahedral values held
for flow rates at minimum creep, under combined shear and
compression over a wide range of octahedral stresses, and
shear and compression component stresses, with the power

Fig. 5. Progress of individual component and octahedral strain rates
as a function of the corresponding component strains for the
experiments shown in Figure 4. All experiments were conducted at
–28C. The rms fractional deviation, 
, of the cubic spline curve from
the experimental strain-rate values is given for each fit to
component and octahedral values.

Fig. 4. Time series of strain rates for individual shear and
compression components, and corresponding octahedral values.
All experiments were conducted at –28C. The rms fractional
deviation, 
, of the cubic spline curve from the experimental
strain-rate values (Eqn (32)) is given for each fit to component and
octahedral values: (a) high shear stress (� = 0.48MPa), low
compression (�=0.16MPa) (test 2); (b) comparable shear and
compression deviator (� =0.49MPa, �=0.98MPa) (test 22); (c)
high-compression deviator, low shear stress (� = 0.98MPa,
� =0.245MPa) (test 18).
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law exponent, n=3 (these experiments form part of the
dataset reanalysed here). From the complete set of minimum
strain rates presented in Table 1 we obtain an average value
for the octahedral flow rate parameter at minimum creep of
ko = 5.9�10–6 s–1MPa–3, or ko = 5.6�10–6 s–1MPa–3 if an
extreme outlying value is discarded. This is in good
agreement with ko = 5.5� 10–6 s–1MPa–3 deduced from the
simpler shear-alone and unconfined-compression-alone
experiments reported in Section 1.2.

For tertiary flow rates in the combined shear and
compression experiments at fixed octahedral stress (�o =
0.4MPa, data also included here), Li and others (1996)
found a monotonic increase in octahedral strain rate, with
increasing dominance of the shear stress component. This
gave an enhancement factor, relative to the minimum
octahedral strain rate, increasing from about EC= 3, for
longitudinally confined compression alone, to about Es =
10–12, for shear alone. Li and others (1996) found that the
variation between these two extremes could be param-
eterized in terms of the compression and shear fractions �c
and �s, defined (for shear and longitudinally confined
compression) by

�c ¼ �

�2 þ 4�2ð Þ1=2
and �s ¼ 2�

�2 þ 4�2ð Þ1=2
: ð29Þ

These can also be expressed in terms of the stress deviators
(szz = –S= –�/2 and sxz= � ) as

�c ¼ S

S2 þ �2ð Þ1=2
and �s ¼ �

S2 þ �2ð Þ1=2
: ð30Þ

For an arbitrary combination of shear and longitudinally
confined normal compression stress with compression
fraction �c, an empirical expression for the corresponding
tertiary octahedral flow rate enhancement factor, Eo(�c), was
provided by Li and others (1996):

Eo �cð Þ ¼ ES
EC
ES

� ��c
: ð31Þ

It was found from the experiments that the time series for the
octahedral strain rate, _"o, considered as a function of
octahedral strain, "o, showed a clear minimum at "o�1%,
and a well-established steady tertiary octahedral strain rate
at "o� 10–20%. Between minimum and tertiary strain,
anisotropic ice crystal orientation fabrics also developed,
with patterns related to the shear and compression fractions
(Li, 1995), similar to those illustrated in Figure 3.

Although relations between octahedral stress and strain
rates in combined stress experiments were established in
these studies, the relations between the individual shear and
compression components were not addressed. The presen-
tation of detailed results and analysis of the relationships
between these separate component strain rates for shear and
compression in combined stress tests is the principal object
of this paper. (Some analyses of component flow relations
were briefly presented by Warner and others (1999), as
mentioned below.)

6. TIME AND STRAIN SERIES FOR INDIVIDUAL
SHEAR AND COMPRESSION STRAIN-RATE
COMPONENTS
The time and strain series for the separate component strain
rates for shear, _�, and confined compression, _", as well as

the octahedral strain rate, _"o, are shown in Figures 4 and 5
for three typical cases chosen from the data set to represent

1. high shear and low compression deviators (test 2),

2. comparable shear and compression deviators (test 22),

3. high compression and low shear deviators (test 18).

The series in Figure 4 are shown as functions of time, while
the corresponding time series for strain rates as functions of
the accumulated component strains (or octahedral strain "o,
as appropriate) are shown in Figure 5. Further time series of
shear strain rates (Fig. 6a) and compressive strain rates
(Fig. 6b) are presented from the dataset to show the
influence of increasing compressive stresses on shear flow
and vice versa. Once again, the examples are chosen to
cover the three classes of stress regime listed above, as
indicated in the Figure 6 caption.

The time-series data presented here (including Figs 4–6)
are a re-analysis of experimental data from Li and others
(1996) and Warner and others (1999). The low recording
frequency of sample displacement during these experiments

Fig. 6. The influence of increasing each component stress on the
other component strain rate. (a) The influence of increasing normal
compression stress on the shear strain rate. Shear strain-rate curves,
( _� versus octahedral strain, "o) are shown for a fixed shear stress
(� =0.49MPa) and three values of the confined normal stress (�=0,
0.98, 1.96MPa) (tests 1, 22 and 16 respectively). (b) The influence
of increasing horizontal shear stress on the vertical compressive
strain rate. Compressive strain-rate curves, ( _" versus octahedral
strain, "o) are shown for a fixed confined normal stress (�=0.49
MPa) for three values of the shear stress (� =0.061, 0.245,
0.420MPa) (tests 14, 15 and 4 respectively). The increases in the
component tertiary strain rates expected for the combined stress
experiments, assuming a Glen-type flow relation, are indicated by
the vertical arrows near the right margins.
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translates into creep curves with relatively few data points.
To aid determination of minimum and tertiary strain rates
(Table 2) and to improve the clarity of Figures 4–6, cubic
spline fitting has been used to generate curves of best fit for
each experiment. In Figures 4–6, 
 is the rms fractional
deviation of each strain-rate observation, _"i , from the
corresponding fitted value, "si .


 ¼ 1
n

Xn
i¼1

_"si � _"i
_"i

� �2
" #1=2

: ð32Þ

Typically, 
� 0.05; in all cases where higher overall values
occur, they are caused by discrepancies between the curve
of best fit and data during either primary or secondary
(minimum) creep. Viewed alone, the correspondence
between the curve of best fit and the data during tertiary
creep is high for all experiments. The decrease in tertiary
creep rates, at strains exceeding �10%, for some experi-
ments in Figures 4 and 6 is related to a decrease in the
applied stresses with increasing strain. This arises from the
combined influence of sample distortion, due to the Poisson
effect, and the application of constant loads, which are
based on the initial sample dimensions.

Li and Jacka (1996) showed that, for this type of
combined stress test, the minimum octahedral strain rate
follows a Glen-type cubic dependence on the octahedral
stress. The strain-rate minima for the individual components
do not follow such a relation, and, particularly in the case of
widely differing component deviators, the minimum for the
smaller component may occur while still in the anelastic
range of strain for that component. Consequently the
component tertiary strain-rate enhancements will be exam-
ined here with reference to the more regular octahedral
minimum strain rates. In Figure 6 all component strain-rate
time series are plotted as a function of the octahedral strain
to maintain synchronicity.

There are two important points to note regarding these
time series. First, when the component deviators are
different the minimum strain rates are generally reached at
different times for each component (Fig. 4). Because of the
differing strain rates this means that for a given experiment
the minima are also generally reached at different com-
ponent strains (Fig. 5). The time of occurrence of the
minimum strain rates tends to be set by the dominant strain-
rate component, or rather by the octahedral rate. Second, for
high shear and low compression (e.g. Fig. 4a), the
enhancement for the tertiary shear strain-rate component
(ratio of tertiary to minimum octahedral strain rates) tends to
be high (cf. data in Table 1). For high compression (e.g.
Fig. 4c) this enhancement in the shear rate tends to be less.
In Figure 6a, which demonstrates the influence of increasing
normal compressive stress for a fixed shear stress, the tertiary
shear strain rates increase with increasing compression in
basic accord with (or slightly below) the indicated predic-
tions of the Glen flow law (Eqn (12)) for n=3. However, the
tertiary compressive strain rates in Figure 6b show a much
stronger influence of increasing shear stress (cf. Table 1) than
expected from Eqn (13) with n=3, with the examples in
Figure 6b showing increases around two to three times the
expectations, as indicated by the arrows in the figure. That
is, it appears that in tertiary flow, shear tends to enhance
compression much more than compression enhances shear.
These qualitative observations are brought out more clearly
and quantitatively in the following sections by examining

the interdependence of the shear and compression flow rates
implied by the Glen relation.

7. MINIMUM STRAIN RATES FOR SHEAR AND
COMPRESSION COMPONENTS
It was shown by Budd and Jacka (1989) that for single-
component experiments the minimum strain rate occurred
as a result of the decreasing anelastic strain rate being
overtaken by increasing plastic-flow strain rate associated
with crystallographic changes. For combined stress experi-
ments, as shown in Figure 4, the minimum strain rates for
the shear and compression components (as well as the
octahedral strain rate) may occur at different times. The time
to minimum is determined primarily by the magnitude of the
dominant (or octahedral) stress. This means that a com-
ponent with a lower strain rate may reach minimum at a
smaller component strain (Fig. 5) than the typical 0.5–2%
octahedral strain at which the minimum strain rate is
reached in the separate individual stress component tests.
Consequently the duration of the low strain rates near the
minimum may be small (in strain terms) for these cases,
lasting less than a few tenths of 1% strain.

In single stress experiments the minimum strain rates
provide a useful reference for examining tertiary strain-rate
enhancement and are proportional to the octahedral rates
anyway. In terms of practical applications, the minimum
strain rates for the individual components in a combined
stress configuration are not very useful, because of their
short strain duration and transitory nature, with transient
anelastic processes still active. To make use of the minimum
strain rates, it is necessary to consider the full temporal
variation of the strain rate under constant stress as well as the
initial state of the material and the long-term anelastic
response. For ice moving slowly through a varying stress
field, if �10% strain occurs before there is a significant
change of stress regime, then the equilibrium tertiary flow
conditions can be assumed, otherwise there could be a lag
between the changing stress and equilibrium tertiary flow
rate. For the tertiary strain rates, the time dependence
becomes unimportant because the steady-state strain rate
develops along with statistically steady-state crystal size,
orientation fabrics, recrystallization and rotation rates. This
makes the tertiary flow rates, for given stress configurations,
the most appropriate to use for most field applications where
near-steady-state or equilibrium flow conditions apply.

8. INTERDEPENDENCE OF SHEAR AND NORMAL
COMPRESSION
For the present experimental tertiary creep data the normal
and shear stresses can be regarded as independent variables,
but in general this does not apply to the corresponding strain
rates. For linear stress–strain relations, i.e. n=1 in Eqns (12)
and (13), the shear strain rate is independent of the normal
compression, and the compressive strain rate is independent
of the shear stress. The experimental data (Table 1) allow us
to examine (1) how the shear strain rate (under constant
shear stress) varies with increasing normal stress and (2) how
the compressive strain rate (under constant normal stress)
varies with increasing shear stress.

We begin our examination of the separate shear and
compression strain-rate components using the correspond-
ing component flow relations of Eqns (12) and (13) derived
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from the Glen flow law. For shear alone (�= 0) and
compression alone (� =0) we have respectively

_� ¼ 2
3
ko�3 ð33aÞ

and

_" ¼ 2
3
koS3: ð33bÞ

If the Glen–Nye second-invariant relation holds, then for a
constant shear stress � the addition of compression with
deviator S multiplies the strain rate for shear alone, Eqn
(33a), by a factor of

3
2
k�1o

_�

�3

� �
¼ 3

2
�2o
�2

� �
¼ 1þ S2

�2
¼ 1
�2s
: ð34Þ

Similarly the addition of a shear stress � to a fixed
compressive stress S multiplies the compression rate for
compression alone, Eqn (33b), by

3
2
k�1o

_"

S3

� �
¼ 3

2
�2o
S2

� �
¼ 1þ �2

S2 ¼
1
�2c
: ð35Þ

In order to test whether the data follow these relations over
the full range of experiments (where the ratios � /S and S/�
can become large), it is convenient to replace the shear
fractions �c and �s with the ‘angular’ variables rc and rs
(collectively ri) where

rc ¼ 4
�

� �
	c with 2	c ¼ tan �1

S
�

� �
ð36Þ

and

rs ¼ 4
�

� �
	s with 2	s ¼ tan �1

�

S

� �
: ð37Þ

The value of rs varies from 0 to 1 as 	s ranges from 0 to �/4,
while � /S varies from 0 to 1. The two angles 	c and 	s are
simply related by

	c ¼ �

4
� 	s ð38Þ

and correspondingly

rc ¼ 1� rs: ð39Þ
The linear relations between 	c and 	s or rc and rs allow all the
strain-rate data to be plotted against rc or rs (as appropriate) on
the one diagram, to show the full range of variations of _� and
_", including the data for shear alone (S=0) and compression
alone (� =0) (cf. Warner and others, 1999).

As discussed above, the minimum strain rates support a
constant value of the power index n=3 for deformations
under shear or compression alone, and for the octahedral
values for the combined stress experiments. Tertiary rates
also support n=3 for shear or compression alone, but with
different enhancements of the octahedral flow rates above
minimum creep rate.

In order to examine how the tertiary shear rate, _�, is
influenced by an increasing compression deviator, S, as a
function of S/� , and how the tertiary compression rate, _", is
influenced by increasing shear stress, � , as a function of � /S
the variations of the strain rates with �3 for _� and S3 for _"may
effectively be removed as in Eqns (34) and (35). We can
further normalize the corresponding ratios to unity for shear
alone and compression alone respectively. This also enables
the measurements to be compared with the Glen second-
invariant formulation given by Eqns (34) and (35).

In Figure 7, for tertiary flow, the normalized values of the
ratios _�=�3ð Þ for shear (crosses) and _"=S3ð Þ for compression

(squares) are plotted on a log scale, against rc and rs
respectively, corresponding to increasing relative compres-
sion, S/� , and increasing relative shear, � /S. A similar display
of an earlier interpretation of the present data was provided
by Warner and others (1999). Also shown is the single
common curve (solid) representing the Glen flow law
relations of Eqns (34) and (35), when normalized by the
enhancement factors to give a common relative strain rate in
shear alone and compression alone (the additional curves
shown in Figure 7 are for more general flow relations
described later).

Because of the normalization of the strain rates by �3

and S3, the values plotted represent second-order devia-
tions from the cubic relations due to the presence of the
other independent stress. Consequently a considerable
amount of scatter can be expected from the experimental
data over such a broad range of stress. In spite of the
scatter, there is a clear indication that the values for
compression on average lie well above the curve for the
Glen flow law, and that the values for shear lie well below
the Glen curve. This means the addition of a shear stress to
normal compression increases the tertiary compression rate
more than the Glen flow law would give, whereas addition
of a compressive stress to shear increases the tertiary shear
rate less than the Glen flow law indicates. These deviations
are more marked for large values of the angular variables
rc and rs.

Fig. 7. The influence of increasing compression on the shear rate,
and of increasing shear on the compression rate, for steady-state
tertiary flow. The normalized ratios of component strain rates to the
cube of the component stress deviators i.e. _�ter=�3 for shear and
_"ter=S3 for compression, are shown as a function of the relative
increase in the other component stress, through rc ¼ 2

� tan
�1ðS=�Þ

for shear strain rate and rs ¼ 2
� tan

�1ð�=SÞ for compression. Also
shown are the curves for the Glen-type flow relation from Eqns (34)
and (35) (solid curve) and curves for the regression models: shear
component from Eqn (41) (lighter dashed curve), and for compres-
sion from Eqn (42) (lighter dot-dashed curve). The corresponding
predictions of the scalar function flow relation from Eqns (54) and
(55) (for ES = 4.5EC) are shown as the corresponding bolder curves.
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Recall that both sets of strain rates have been normalized
to the respective strain rates for shear alone and compression
alone, which corresponds to multiplying the octahedral flow
parameter ko in Eqns (34) and (35) by the enhancement
factors Es and Ec respectively. The fact that Es is �4.5 times Ec
means that without normalization the shear strain-rate data
would plot above the compression data in Figure 7 for low
values of ri and therefore have a zone of overlap at higher
values of ri.

There is relatively little effect of the additional stress in
either case, up to values for which the two deviators are
nearly equal (rc = rs = 0.5), but for large values of the added
stress component the relative ratios of the normalized
observed compression to shear rates could reach an order
of magnitude or more. In practical terms, for any given
applied stress deviator, the application of an additional
independent deviator to a material obeying a Glen flow law,
effectively makes the material appear more deformable to
the first applied stress, through the presence of the
octahedral stress term, �2o in Eqns (12) and (13).

From the results presented here for tertiary flow rates of
ice, the addition of shear to compression appears to make
the material even more deformable in compression than the
Glen flow law indicates, while the addition of normal
compression to shear softens the material in shear less than
the Glen flow law would indicate. The mechanism for these
effects most likely relates to the evolution towards the
compatible steady-state tertiary polycrystalline microstruc-
ture, including the crystal size, fabric, texture, dislocation
density and the rate of recrystallization. Further considera-
tion of these mechanisms is beyond the scope of the present
paper. The qualitative remarks above regarding the influ-
ences on the individual component flow relations are further
quantified in the following section.

9. THE FLOW RELATIONS FOR THE INDIVIDUAL
SHEAR AND COMPRESSION COMPONENTS
The experimental data depicted in Figure 7 were further
analysed, to examine the departure from the normalized
versions of the Glen relations, Eqns (34) and (35). We
considered possible alternative relations by plotting on log–
log axes the respective left-hand sides against �s and �c. The
data indicate that a better-fitting empirical flow relation may
be expressed by

3
2

ESkoð Þ�1 _�

�3

� �
¼ 1
�s

and

3
2 ECkoð Þ�1 _"

S3

� �
¼ 1
�3c

ð40Þ

corresponding to the shear and compression relations

_� ¼ KS�o�
2 ð41Þ

and (provided S 6¼ 0)

_" ¼ KC�
3
o ð42Þ

where KS ¼
ffiffi
2
3

q
koES and KC ¼

ffiffi
3
2

q
koEC.

This analysis requires some qualification if the compres-
sive stress vanishes, at least to remain within our declared
class of relationships between stresses and strain rates, as
discussed below.

This has been examined further by separate regression
analyses of relations of the type

_� ¼ KS�
p
o �

q and _" ¼ KC�
p
o S

q ð43Þ
for the data from Table 1. The analyses give more support for
p�1, q� 2 for the shear strain rate, and p� 3, q� 0 for the
compressive strain rate, rather than p=2 and q=1 in both
cases for the Glen flow law. The relations for the shear and
compression rate components can then also be written as

_� ¼ 2
3
ESko�3 1þ S2

�2

� �1=2

and _" ¼ 2
3
ECkoS3 1þ �2

S2

� �3=2

:

ð44Þ
Curves following these relations, normalized to common
values for shear alone and compression alone, are shown in
Figure 7. The thin dashed curve for shear, and the thin dot-
dashed curve for compression pass reasonably well through
the shear and compression data points respectively. There is
a certain symmetry with respect to the Glen flow relation
(solid curve), with the shear strain-rate data points falling
about as far below (on the log strain-rate vertical scale) as
the compression points lie above. It should be noted that the
validity of Eqn (42) for the compressive strain rate is
questionable as it has the property that _" 6¼ 0 when S=0.

The question now arises as to whether these relations
obtained for the individual components of shear and
compression strain rates are compatible with the relation
for octahedral strain rate in combined shear and compres-
sion as determined by Li and Jacka (1996) and Li and others
(1996).

10. OCTAHEDRAL STRAIN RATE IN COMBINED
SHEAR AND COMPRESSION REVISITED
If it is assumed that the expression for octahedral strain rate
for these combined shear and compression tests given by Eqn
(23) is still appropriate for representing the octahedral strain
rate as the rms value of the principal strain rates, then the
empirically based relations for _� and _" from Eqns (41) and
(42) can be used to evaluate _"o. In this case, the common flow
parameter, ko, for minimum octahedral strain rate from the
separate shear-alone and compression-alone experiments is
used together with the respective enhancement factors in
tertiary flow relative to that of minimum (Es and Ec) to give

_� ¼
ffiffiffi
2
3

r
ESko�o�2 ð45Þ

and

_" ¼
ffiffiffi
3
2

r
ECko�o3: ð46Þ

Using Eqn (23) the octahedral strain rate, _"o, is given by

_"o ¼ ko E 2
C �o

6 þ 2
3

� �2

E 2
S �

4�o
2

" #1=2

¼ koEC�o
3 1þ 4

9
ES
EC

� �2 �2

�o2

� �" #1=2

¼ koEC�o
3 1þ ES

EC

� �2

� 4
s

" #1=2
:

ð47Þ

This equation shows how the octahedral strain rate in
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combined shear and compression would vary from
compression alone (�s = 0) to shear alone (�s = 1) for any
combination of S and � as well as �o, for the component
flow relations (Eqns (45) and (46)). Since ES� 4.5EC,
averaged over the entire dataset, the value of

EC 1þ ES=ECð Þ2�4s
h i1=2

for �s = 1 is �15% larger than Es.

Thus, the octahedral strain rate for tertiary flow in
combined shear and compression increases monotonically
from the compression rate (with enhancement Ec) for
compression alone, to approximately the shear rate (with

enhancement EC 1þ ES=ECð Þ2
h i1=2

� ES) for shear alone

following Eqn (47).
Based on the findings of Treverrow and others (2012),

future combined stress experiments may suggest a down-
ward revision of ES�4.5EC. Their analysis of shear-alone
and compression-alone experiments conducted over a
broader range of stresses than considered here suggests
ES�2.3EC. This is attributed to a dependence of ES and EC on
�o and an alteration to the compression experiment method
where the influence of the Poisson effect on decreasing the
compression deviatoric stress with increasing strain is taken
into consideration. This results in slightly higher EC values
for a given �o.

The variation in tertiary creep rate over this full range of
the data is illustrated in Figure 8a which shows the (suitably
normalized) ratio of the tertiary octahedral strain rate, _"o, to
the cube of the octahedral stress, i.e. _"o= koEC�3o

� 	
, plotted

against rs ¼ ð2=�Þ tan �1ð�=SÞ. In spite of the scatter (which
is expected to be large for these second-order effects over
such a large range of stresses), the data show a reasonable
match to the symmetric trend given by the dashed curve
corresponding to Eqn (47). This relation also provides a
better fit to the whole dataset than does the previous
relation, Eqn (31), originally proposed by Li and others
(1996).

Figures 7 and 8a and Eqns (44–47) summarize how, in
steady-state tertiary flow under combined shear and
compression, the individual shear and compression com-
ponent strain rates (and the octahedral strain rate) vary with
the individual components of shear stress and normal
compression, showing the influences of the magnitude of
the octahedral stress and the relative sizes of the com-
ponents. These results, which include the empirical values of
the parameters, can be used directly in modelling studies or
in the analysis and interpretation of field studies of ice
deformation if the appropriate combination of shear and
compressive stresses is encountered.

11. ALTERNATIVE FORMULATIONS OF THE FLOW
RELATIONS FOR COMBINED STRESSES
We have examined a number of alternative forms of the flow
relation for combined shear and normal stresses in addition
to those represented by Eqns (12) and (13) (Glen’s law) and
the empirical fitting (Eqns (41) and (42)) proposed above. As
noted previously, shear-alone experiments by Li and others
(2000) have shown that vertical strain where there is no
corresponding deviatoric stress is an experimental artefact
that can be avoided through appropriate selection of the
sample geometry. Consequently the unresolved problem
regarding the nonzero compression rate for shear alone,
which is a feature of Eqn (42), deserves further investigation.

One alternative formulation which avoids this problem,
while remaining clearly within the class of flow relations for
which we can reasonably deduce deviatoric stresses, and
which provides a reasonable match to the data, was
presented by Warner and others (1999). In brief, a candidate
expression for the octahedral strain rate, which varies with
the cube of the octahedral stress and has a monotonic

Fig. 8. (a) Dependence of the (normalized) ratio of tertiary
octahedral strain rate, _"o and the cube of the octahedral stress, �3o
(i.e. the effective tertiary flow parameter) on the relative proportions
of the shear and compression deviatoric stresses, as described by
the variable rs. From Eqn (56), the ratio _"o=�

3
o ¼ koT 2

o =�
2
o is

normalized to _"o=�
3
o ¼ 1 at � =0 (rs = 0). The dashed curve shows

the relationship corresponding to Eqn (47) for Es = 4.5Ec. The solid
curve shows the corresponding relation for the scalar formulation
from Eqns (56) and (57), i.e. Es�2 þ EcS2½ �= Ec �2 þ S2ð Þ½ � which fits
the experimental data well. (b) Dependence of the quantity
koT 2

o =�
2
o on the stress configuration parameter rs, where koT 2

o =�
2
o

is calculated from Eqns (54) and (55) for the shear and compression
components respectively, and Eqn (56) for the octahedral strain rate.
These values are normalized by koT 2

o =�
2
o for rs = 0. As in (a), the

solid curve is given by Es�2 þ EcS2½ �= Ec �2 þ S2ð Þ½ �. The important
result from the scalar formulation here is that the individual strain-
rate components for shear and compression follow the same
relation as �o (Eqns (54) and (55)), as would all tensor components.
One outlier (test 17) lies off-scale.
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increase in enhancement in tertiary strain rate from Ec in
compression alone (�c = 1) to Es in shear alone (�s = 1), is

_"o ¼ ko�o3 ES2=3�s2 þ EC2=3�c2
h i3=2

: ð48Þ
This equation can also be written in terms of � and S by
substituting for �s and �c.

There is nothing sacrosanct about the use of the octahedral
stress in an anisotropic situation and it may be more useful to
consider a weighted rms stress of the form

eTo ¼ 2
3

� �1=2

2�2 þ �2S2� 	1=2 ð49Þ

where

 ¼ ES1=3 and � ¼ EC1=3: ð50Þ
Equation (48) for the octahedral strain rate can then be
written as

_"o ¼ koeT 3
o : ð51Þ

This is then compatible with the individual shear and
compression strain rates being given by

_� ¼ koeT 2
o � , ð52Þ

and

_" ¼ ko�eT 2
o S, ð53Þ

with _"o ¼
ffiffi
2
3

q
_"2 þ _�2
� 	1=2

giving Eqn (51). Equations (52) and

(53) for the individual components are analogous to Eqns (41)
and (42) of the previous formulation and Eqns (12) and (13)
for the Glen flow law.

There is also a smooth variation in _"o from the tertiary
enhancement of EC in compression alone, to ES in shear
alone, with rc or rs, similar to that shown in Figure 8a, again
giving a better fit to this more extensive dataset than the
empirical Eqn (31) obtained from the more limited data of Li
and others (1996).

The term eTo, which can be referred to as a weighted mean
shear stress, by analogy with �o may be considered to play a
similar role in the anisotropic tertiary flow law to that which
the octahedral stress plays in Glen’s flow law. The expressions
for octahedral strain rate and the strain rates for the individual
shear and compression components (Eqns (52) and (53)) have
similar expressions to the Glen flow law but in terms of eTo
rather than �o, and with different constants for the different
components.

In spite of the similarity to the Glen relations, the
description above is a no longer a scalar representation of
the flow law of ice, which is not unexpected for anisotropic
flow. Indeed, recalling that we are working here with a
specific choice of coordinate frame, the two different
constants, = ES

1/3 and � = EC
1/3 could just be regarded as

part of a more general fluidity matrix, as seen in that frame.
This parameterization of the present experiments might be
useful in exploring general tensor viscosity relationships, and
in connecting our experiments with flow relations based on
crystal anisotropy (e.g. Lile, 1978; Azuma and Goto-Azuma,
1996; Thorsteinsson, 2001; Gillet-Chaulet and others, 2005;
Seddik and others, 2008). The appropriate path to be pursued
to construct a general flow relation from the present partial
information is less obvious within our framework of
considering only compatible tertiary flow situations.

However, we have also developed a scalar formulation of
the tertiary ice flow relations, which provides an even closer

fit to the present set of experimental data than that presented
above from Warner and others (1999), and which may be
simpler to use in numerical modelling.

This formulation, with a non-Newtonian scalar fluidity
that contains both nonlinearity and anisotropy in a single
common factor via another version of the weighted rms value
of the stresses, may be expressed by the following flow
relations, which correspond to Eqns (52), (53), (51) and (49)
respectively:

_� ¼ koT 2
o � , ð54Þ

_" ¼ koT 2
o S ð55Þ

and

_"o ¼ koT 2
o �o, ð56Þ

where

To ¼ 2
3

� �1=2

ES�2 þ ECS2� 	1=2 ð57Þ

is a newweighted mean stress, and �o is the octahedral stress.
These relations also match the present data well, including

the tertiary shear and compression component strain rates, as
seen by the corresponding bolder curves in Figures 7 and
solid curves in Figure 8a and b. Figure 8b is similar to
Figure 8a, with the addition of experimental data for the
separate tertiary shear and compression component strain
rates, and indicates that these have a dependence on rs and
level of fit to Eqn (56) similar to those of the octahedral strain
rates. Small discrepancies from the data exist at the
extremities of Figure 8b (where rs ! 0 and rs ! 1) with the
minor strain-rate components higher than would be expected
from a precise scalar fit. This behaviour may be related to the
compromised sample aspect ratio chosen for these experi-
ments (as shown by Li and others, 2000). Note that if one
defines an enhancement function by E �cð Þ ¼ T 2

o =�
2
o, where

�c is the compressive stress fraction (Eqn (30)), then this
provides a particular functional form for a scalar enhance-
ment factor function applicable to the standard Glen flow
relation, analogous to that used byWang and others (2002) to
model the strain rates through the depth of an ice sheet.

A scalar flow relation works so well because in tertiary
flow both the shear and compression components are
strongly increased by large values of the other stress deviator,
even when the developing fabrics might have been supposed
to become more disadvantageous (harder glide) for the
component in question, as shown by considering Figures 3–
5, together with Table 2. Furthermore, most of the asymmetry
of the tertiary flow rates for the shear and compression
components is well captured by the asymmetry in the
expression for To, with the different values of the single stress
enhancement factors, ES and EC.

The present results involve horizontal shear and vertical
compression confined in the direction of shear, with
extension possible in the transverse direction. It would be
desirable to rearrange the experimental apparatus to study
the compression confined in the transverse direction, i.e.
with extension possible only along the shear direction. These
two types of confined compression represent extremes,
which when combined with unconfined compression should
provide a reasonable coverage of the more general situation
of an arbitrary amount of transverse extension relative to the
longitudinal extension in the line of flow.
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Thus far, Eqns (54–57) simply reflect a scalar flow relation
that covers the particular stress configurations covered by
our experiments, but unlike our earlier suggestions it does
offer scope to contemplate possible generalizations. Other
authors (e.g. Placidi and Hutter, 2006 and the CAFFE model
of Seddik and others, 2008; Placidi and others, 2010) have
also suggested using scalar anisotropic flow relations,
generalizing the formulation of Glen and Nye (Eqns (9)
and (11)) by introducing dependencies of B, or equivalently
an effective tertiary ko, involving the applied stresses and
crystal axis orientations. This approach is partly a simplifica-
tion but is also necessitated by the scarcity of direct
laboratory measurements of ice flow responses under
combined stresses.

12. SPECULATIONS ABOUT GENERALIZING THE
SCALAR FLOW RELATION
Although experimental data for the other combinations of
shear and compression are not yet available, we speculate
that a useful generalization of the present scalar anisotropic
flow relation might be made for the tertiary flow of ice, for
situations involving shear with a non-rotating shear plane,
combined with a compression (or extension) normal to that
plane and a partition of transverse and longitudinal normal
deformations. A major simplification of the scalar flow
relation is that ratios of strain rates are equal to ratios of the
corresponding deviatoric stresses. Arbitrary stress (or strain-
rate) fields can in principle always be resolved to find the
shear acting on a non-rotating shear plane (if present) and
the stress normal to that plane (Jaeger, 1969). Note that in
general there will also be stresses acting within the non-
rotating shear plane, including the deviatoric stresses
required to counter any normal compression. Since the
enhancement of tertiary flow rates above minimum for
confined compression alone and unconfined compression
alone are approximately the same, we make the assumption
that this approximate equality also holds for intermediate
degrees of confinement in the longitudinal or transverse
directions. Accordingly, by parameterizing the normal
deformations in the x and y directions (and hence also the
corresponding deviatoric normal stresses) in terms of the
compressive strain rate via �, where _"yy ¼ �� _"zz and
_"xx ¼ � � 1ð Þ _"zz , we can extend the expressions of Section
1.2 to treat the more general distribution of normal
deformations in the (x, y) plane:

_"ij ¼
1� �ð Þ _" 0 _�

0 � _" 0
_� 0 � _"

0@ 1A ð58Þ

with octahedral strain rate given by

_"o ¼
ffiffiffi
2
3

r
_�2 þ _"2 1þ � � � 1ð Þð Þ� 	1=2

,

and corresponding deviatoric stresses given by

sij ¼
1� �ð ÞS 0 �

0 �S 0
� 0 �S

0@ 1A: ð59Þ

This leads us to postulate that the generalization of To should
be the analogous quadratic invariant constructed from the
following weighted version of the deviatoric stress tensor (in

the specific reference frame of the non-rotating shear plane):

1� �ð ÞEC1=2S 0 ES1=2�
0 �EC1=2S 0

ES1=2� 0 �EC1=2S

0@ 1A ð60Þ

leading to the expression

To ¼ 2
3

� �1=2

ES�2 þ ECS2 1þ � � � 1ð Þð Þ� 	1=2
, ð61Þ

where � is the shear stress on a non-rotating shear plane, S is
the deviatoric compressive stress acting normal to that
plane, and � describes the proportions of the normal stress
deviators acting longitudinal and transverse to the shear
direction. The flow law Eqns (54–56) then hold in this more
general case, just by using the more general expression for
To, which of course includes the previous case of Eqn (57)
for � =1 and unconfined compression when � =1/2.

We can also speculate that this situation might generalize
even further, to completely general stress conditions, as
follows. If we identify the unit normal to the non-rotating
shear plane by bn ¼ n1, n2, n3f g, then the normal deviatoric
stress on that plane has magnitude bn � s � bn, (nisiknk in terms
of components of the deviatoric stress tensor) and ~� s, the
shear component of the stress vector acting on that plane,
has components � sj ¼ nisij � nisiknkð Þnj . The essential re-
quirement in constructing an anisotropic scalar flow relation
is clearly to distinguish the influence of the shear acting on
the non-rotating shear plane. A simple approach might be to
simply use ~� s in such a construction, but for consistency
with our focus on the role of the movement picture and the
non-rotating shear plane we consider a further refinement.
The vorticity vector for the flow (~! ¼ ~r�~
) contains
information about the rotation rate, and it must lie in the
non-rotating shear plane. Since our interest here is in flow
relations at the local material scale, it may be necessary in
modelling applications to correct the vorticity for any
contributions associated with large-scale rigid-body rota-
tions of ice flow. The local vorticity provides the normal to
the plane containing bn in which the simple shear acts. More
precisely, any component of the shear traction ~� s parallel to
the local vorticity does not participate in the simple shear,
and can be projected out using the unit vector parallel to the
vorticity, b! ¼ b!1, b!2, b!3f g, to form the non-rotating shear
stress vector: �

0
j ¼ nisij � nisiknkð Þnj � ðnisik b!kÞb!j. Accord-

ingly, a further generalization of To can be envisaged:

To
2 ¼ EC� 2

o þ ES � ECð Þ 2
3
� 02 ð62Þ

where �o is the octahedral stress and � 02 ¼ � 0j �
0
j is the square

of the magnitude of the non-rotating shear stress vector. This
enables the hypothetical flow relations to be written using
this particular weighted rms shear stress (in an arbitrary
Cartesian coordinate frame) as

_"ij ¼ koTo
2
sij ð63Þ

covering all the stress deviator and strain-rate components.
This naturally reduces to our previous relationships above. It
will be interesting to see if it is validated by further
experiments and observations. If not, then a more general
tensor formulation of fluidity may be required, rather than
the scalar relation we present here.
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13. SUMMARY AND CONCLUSIONS
Deformation tests reaching steady-state tertiary flow, in
combined shear and normal compression, have now been
completed covering a wide range of stresses for each of the
individual shear and compression components. The results
confirm a cubic relationship between the octahedral stresses
and strain rates, and similar relationships apply, with
different constants, for the separate shear and compression
components in tertiary flow, for fixed values of the ratio of
the shear stress, � , to the compression deviator, S.

Atminimum strain rate the results for the octahedral stress
and strain rates in the present combined tests, as well as
earlier tests with compression or shear alone conform to the
relation

_"o ¼ ko� 3
o ð64Þ

with ko = 5.6�10–6 s–1MPa–3 at –28C. It is expected that the
results obtained here should carry over to other temperatures
through the dependence implicit in the varying activation
energy values given by Budd and Jacka (1989), which were
confirmed for single stress tests of shear and compression.

In tertiary flow for the combined stress experiments, the
enhancement factor for the octahedral strain rate relative to
the common minima in the separate stress experiments
increases monotonically from Ec�3 for compression alone
to Es� 12 (in these tests) for shear alone.

For the individual component strain rates it has been
found that the presence of the other stress component does
increase the tertiary strain rate, but the shear strain rate is
increased less by the influence of compression than the Glen
flow law would prescribe, whereas the compression rate is
increased more than expected from the Glen flow law
prediction by the addition of shear stress. This means that,
for tertiary (anisotropic) flow, shear stress has more effect on
the (normal) compression rate than the compression has on
the shear rate.

We developed a scalar function formulation of the flow
relation for this particular type of deformation. The aniso-
tropic aspects of the tertiary flow, under the conditions of
shear and compression in our experiments, are captured
using a modified weighted mean stress to provide the
nonlinear scalar function. The reason this works so well is
that in the progress towards tertiary flow we observed that
both shear and compressive strain rates increased at similar
rates to the octahedral strain rate. For the particular stress
arrangement of our experiments, shear (� ) and longitudinally
confined compressive deviator (S), with the following
expression for the ‘weighted mean shear stress’,

To ¼ 2
3

� �1=2

ES�2 þ ECS2� 	1=2 ð65Þ

we can write, in our reference frame, analogously to the
Glen flow relations of Eqns (10), (12) and (13),

_"xz ¼ koT 2
o �xz ð66Þ

_"zz ¼ koT 2
o szz ð67Þ

and

_"o ¼ koT 2
o �o, ð68Þ

where ko is the octahedral flow relation for minimum creep
flow of isotropic ice.

These relations fit the experimental data as closely as
our other formulations, with comparative plots shown in

Figures 7 and 8a. They clearly revert to the single-stress-test
expressions for shear alone or compression alone, if one of
the deviatoric stresses goes to zero. The scalar relation is
also confirmed by the components following the same curve
as the octahedral values (Fig. 8b).

The corresponding laboratory results are not available for
shear combined with unconfined compression, or for the
more general case of an arbitrary partitioning of the
extensive longitudinal and transverse deformations. Never-
theless, in single stress tests, confined and unconfined
compression have similar minimum flow rates and tertiary
enhancement factors, for the same deviatoric stresses. This
led us to propose generalizing the relations above (Eqns (66–
68)) to the case of shear, � , acting in the direction of flow on
a non-rotating shear plane, together with compression
normal to that plane and extension in both lateral and
longitudinal directions, by replacing Eqn (65) with Eqn (61),
i.e.

To ¼ 2
3

� �1=2

ES�2 þ ECS2 1þ � � � 1ð Þð Þ� 	1=2 ð69Þ

where for a scalar flow relation � ¼ � _"yy= _"zz ¼ �Syy=Szz .
We also speculated that since, in tertiary flow, shear

associated with a non-rotating shear plane is enhanced
compared to other deformations, a scalar flow relation for
general applied stresses and for an arbitrary Cartesian
coordinate frame might take the form

_"ij ¼ koTo
2
sij ð70Þ

where

To
2 ¼ EC� 2

o þ ES � ECð Þ 2
3
� 02 ð71Þ

involves the octahedral stress, �o, and the square of the
component of the shear stress on the non-rotating shear
plane, normal to the vorticity vector, � 02.

The simplicity of these relations and their similarity to the
Glen flow law would make them relatively easy to use in
numerical modelling for a broad class of ice flow situations
analogous to those of our laboratory experiments, and
potentially for more general situations.

It should be clear that although the analysis here has been
made largely in terms of stress deviators and strain rates, the
complete flow picture, including rotations, needs to be
taken into account, which encompasses the developed
compatible anisotropy. The horizontal shear plane treated
here does not rotate and is not in general a principal shear
plane. The confined compression stress state has a similar
two-dimensional stress deviator configuration to that for
simple shear, but with a different rotation regime.

Finally, the results presented here for the individual strain-
rate components in combined shear and compression
provide the most appropriate flow relations to use in the
analysis of field deformation studies of ice where combined
stress situations are the norm rather than the exception.
Furthermore for field situations where the accumulated
strain is more than about 10–20% under a uniform stress
regime the flow should be expected to be in tertiary flow.
Thus in the modelling of ice flow, the general occurrence of
implicit combined stresses and large strains means it is more
appropriate to use flow relations based on results from
combined stress experiments and tertiary flow rates, as
presented here, with appropriate values of the flow
enhancement parameters as given above.
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